
  
 

 
TARGET RECOGNITION USING LINEAR CLASSIFICATION   

OF HIGH RANGE RESOLUTION RADAR PROFILES 
 

THESIS 
 

Ricardo A. Diaz, Captain, USAF 

 

AFIT/GE/ENG/04-06 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

 
AIR FORCE INSTITUTE OF TECHNOLOGY 

 
Wright-Patterson Air Force Base, Ohio 

 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



AFIT/GE/ENG/04-06 
 
 

 
 
 

TARGET RECOGNITION USING LINEAR CLASSIFICATION                                 
OF HIGH RANGE RESOLUTION RADAR PROFILES 

 
 

THESIS 
 
 
 
 

Presented to the Faculty 
 

Department of Electrical and Computer Engineering 
 

Graduate School of Engineering and Management 
 

Air Force Institute of Technology 
 

Air University 
 

Air Education and Training Command 
 

In Partial Fulfillment of the Requirements for the 
 

Degree of Master of Science in Electrical Engineering 
 
 
 
 

Ricardo A. Diaz, BSEE 
 

Captain, USAF 
 
 

March 2004 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 



AFIT/GE/ENG/04-06 
 
 
 
 
 

TARGET RECOGNITION USING LINEAR CLASSIFICATION 
OF HIGH RANGE RESOLUTION RADAR PROFILES 

 
 
 
 

Ricardo A. Diaz, BSEE 
Captain, USAF 

 
 
 
 
 
 
 
 
Approved: 
 
 
/signed/ 
____________________________________ ___________________________ 
Steven C. Gustafson, Ph.D. (Chairman)  Date 
 
/signed/ 
____________________________________ ___________________________ 
Maj Matthew E. Goda, Ph.D. (Member)  Date 
 
/signed/ 
____________________________________ ___________________________ 
Michael A. Temple, Ph.D. (Member)   Date 
 
 
 
 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In memory of Maj William D. Wood, PhD, whose guidance was generously 
 extended and well received during a period of personal difficulty.   

I am forever grateful.



 iii

Table of Contents 

 

Table of Figures ................................................................................................................. vi 

Abstract............................................................................................................................... x 

I. Introduction ..................................................................................................................... 1 

1.1 Background............................................................................................................... 1 

1.2 Previous Work .......................................................................................................... 1 

1.2.1 HRR Profile Features ......................................................................................... 2 

1.2.2 HRR Profile Classification ................................................................................ 2 

1.2.3 Literature Review............................................................................................... 2 

1.3 Problem Statement.................................................................................................... 3 

1.4 Objectives ................................................................................................................. 4 

1.5 Materials and Equipment .......................................................................................... 5 

1.6 Thesis Organization .................................................................................................. 5 

II. Background .................................................................................................................... 6 

2.1 Pattern Recognition................................................................................................... 6 

2.1.1 Feature Extraction.............................................................................................. 6 

2.1.2 Classification...................................................................................................... 7 

2.1.3 Principal Component Analysis .......................................................................... 7 

2.1.4 Fisher Linear Discriminant Analysis ................................................................. 8 

2.1.5 Parzen Windows Probability Density .............................................................. 18 

2.2 High Range Resolution Radar ................................................................................ 20 

2.2.1 High Range Resolution Profiles....................................................................... 20 



 iv

2.3 HRR Profile Moments ............................................................................................ 22 

2.4 Moving Target Features and Phenomenology (MTFP) Program ........................... 25 

III. Methodology............................................................................................................... 27 

3.1 Introduction............................................................................................................. 27 

3.2 Data Extraction ....................................................................................................... 27 

3.3 Data Pre-Processing................................................................................................ 28 

3.3.1 HRR Profile Scaling ........................................................................................ 30 

3.3.2 Moment Extraction .......................................................................................... 31 

3.4 Classification Training Matrix Development ......................................................... 33 

3.5 Classification Testing Matrix Development ........................................................... 36 

3.6 Hypothetical Two-Target "Same" or "Different" Scenario .................................... 36 

3.7 Classifier Simulation Loop ..................................................................................... 41 

3.8 Two-Target and Multi-Target Scenarios ................................................................ 41 

IV. Results ........................................................................................................................ 42 

4.1"Same" Versus "Different" Team Results ............................................................... 42 

4.2 Two-Target Classification ...................................................................................... 52 

4.3 Three-Target Classification .................................................................................... 61 

V. Conclusions.................................................................................................................. 76 

5.1 Summary................................................................................................................. 76 

5.1.1 Performance of HRR Profile Moments as Classification Features.................. 76 

5.1.2 Performance of Fisher Linear Discrimination as a Classification Method...... 76 

5.1.3 Linear Classification Performance................................................................... 77 

5.2 Recommendations for Future Work ....................................................................... 77 



 v

5.2.1 Expand Fisher Linear Discrimination to Four-Target Scenario ...................... 77 

5.2.2 Select a Different Feature Set for Use with FLD Classification...................... 77 

5.2.3 Non-linear Classification Using Moment Features.......................................... 78 

5.2.4 Train on Synthetic Data and Test on Measured Data ...................................... 78 

Bibliography ..................................................................................................................... 79 

Appendix-A ...................................................................................................................... 81 

 



 vi

Table of Figures 

 
Figure 1. Fisher Linear Discriminator Example ................................................................. 9 

Figure 2.  Comparison of Class Separability Along Different Axis ................................. 10 

Figure 3. Fisher Linear Discriminant Projection Example ............................................... 12 

Figure 4.  Example of Three-Class Fisher Linear Discrimination.................................... 17 

Figure 5.  Fisher Linear Discrimination Examples........................................................... 18 

Figure 6.  Parzen Window Example ................................................................................. 19 

Figure 7.  Window for Extraction of High Range Resolution Profile .............................. 21 

Figure 8.  High Range Resolution Profile Variation......................................................... 21 

Figure 9.  The Third Statistical Moment--Skewness ........................................................ 24 

Figure 10.  The Fourth Statistical Moment--Kurtosis....................................................... 24 

Figure 11.  Target Configurations for the MTFP Program............................................... 25 

Figure 12.  MTFP Test Set Up.......................................................................................... 26 

Figure 13.  Application of Target Mask to HRR Profile Data.......................................... 29 

Figure 14.  Comparison of Linear and Decibel Scaled PDF............................................. 30 

Figure 15.  Three-Dimensional Comparison of Moment Feature Set .............................. 31 

Figure 16.  Four Target Moment Comparison .................................................................. 32 

Figure 17.  Example of a Training Matrix Projection Output........................................... 35 

Figure 18.  Hypothetical Scenario for Moving Target Classification............................... 37 

Figure 19.  HRR Profile Sample Distribution Tree .......................................................... 38 

Figure 20.  "Same" versus "Different" Comparison of BTR-80 and SCUD .................... 43 

Figure 21.  Histogram of BTR-80 and SCUD with 0° Target Rotation ........................... 44 



 vii

Figure 22.  "Same" versus "Different" Comparison of BTR-80 and M2 ......................... 45 

Figure 23.  Histogram of BTR-80 and M2 with 0° Target Rotation ................................ 46 

Figure 24.  "Same" versus "Different" Comparison of BTR-80 and T-72 ....................... 47 

Figure 25.  Histogram of BTR-80 and T-72 with 0° Target Rotation .............................. 48 

Figure 26.  Comparison of BTR-80 and T-72 with Different Rotation Angles................ 49 

Figure 27.  Histograms of BTR-80 and T-72 at Different Rotation Angles ..................... 50 

Figure 28.  Aspect Angle View Classification Results for BTR-80 and ZIL-131............ 56 

Figure 29.  Sample Window Size Classification Results for BTR-80 and ZIL-131......... 57 

Figure 30.  Aspect Angle View Classification Results for T-72 and BTR-80 ................. 58 

Figure 31.  Sample Window Classification Results for T-72 and BTR-80 ...................... 59 

Figure 32.  Three-Target Classification Training Histogram (BTR, ZIL, SCUD) ........... 64 

Figure 33.  Three-Target Classification Training Plot (BTR, ZIL, SCUD) ..................... 65 

Figure 34.  Three-Target Classification Testing Histogram (BTR, ZIL, SCUD)............. 66 

Figure 35.  Three-Target Classification Testing Plot (BTR, ZIL, SCUD) ....................... 67 

Figure 36.  Three-Target Classification Training Histogram (M2, ZIL, SCUD) ............. 68 

Figure 37.  Three-Target Classification Training Plot (M2, ZIL, SCUD)........................ 69 

Figure 38.  Three-Target Classification Testing Histogram (M2, ZIL, SCUD) ............... 70 

Figure 39.  Three-Target Classification Testing Plot (M2, ZIL, SCUD) ......................... 71 

Figure 40.  Three-Target Classification Training Histogram (M2, T72, SCUD) ............. 72 

Figure 41.  Three-Target Classification Training Plot (M2, T72, SCUD) ....................... 73 

Figure 42.  Three-Target Classification Testing Histogram (M2, T72, SCUD)............... 74 

Figure 43.  Three-Target Classification Testing Plot (M2, T72, SCUD) ......................... 75 

Figure 44.  Aspect Angle View Classification Results for BTR-80 and ZSU-23 ............ 81 



 viii

Figure 45.  Sample Window Classification Results for BTR-80 and ZSU-23 ................. 81 

Figure 46.  Aspect Angle View Classification Results for M-2 and BTR-80 .................. 82 

Figure 47.  Sample Window Classification Results for M-2 and BTR-80 ....................... 82 

Figure 48.  Aspect Angle View Classification Results for M-2 and SCUD..................... 83 

Figure 49.  Sample Window Classification Results for M-2 and SCUD.......................... 83 

Figure 50.  Aspect Angle View Classification Results for M-2 and ZIL-131.................. 84 

Figure 51.  Sample Window Classification Results for M-2 and ZIL-131....................... 84 

Figure 52.  Aspect Angle View Classification Results for M-2 and ZSU-23................... 85 

Figure 53.  Sample Window Classification Results for M-2 and ZSU-23 ....................... 85 

Figure 54.  Aspect Angle View Classification Results for SCUD and BTR-80............... 86 

Figure 55.  Sample Window Classification Results for SCUD and BTR-80 ................... 86 

Figure 56.  Aspect Angle View Classification Results for SCUD and ZIL-131 .............. 87 

Figure 57.  Sample Window Classification Results for SCUD and ZIL-131................... 87 

Figure 58.  Aspect Angle View Classification Results for SCUD and ZSU-23............... 88 

Figure 59.  Sample Window Classification Results for SCUD and ZSU-23.................... 88 

Figure 60.  Aspect Angle View Classification Results for T-72 and M-2........................ 89 

Figure 61.  Sample Window Classification Results for T-72 and M-2 ............................ 89 

Figure 62.  Aspect Angle View Classification Results for T-72 and SCUD.................... 90 

Figure 63.  Sample Window Classification Results for T-72 and SCUD......................... 90 

Figure 64.  Aspect Angle View Classification Results for T-72 and ZIL-131 ................. 91 

Figure 65.  Sample Window Classification Results for T-72 and ZIL-131...................... 91 

Figure 66.  Aspect Angle View Classification Results for T-72 and ZSU-23.................. 92 

Figure 67.  Sample Window Classification Results for T-72 and ZSU-23 ...................... 92 



 ix

Figure 68.  Aspect Angle View Classification Results for ZIL-131 and ZSU-23............ 93 

Figure 69.  Sample Window Classification Results for ZIL-131 and ZSU-23................. 93 

Figure 70.  Aspect Angle View Classification Results for T-72 and ZIL-131 ................. 94 

Figure 71.  Sample Window Classification Results for T-72 and ZIL-131...................... 94 

Figure 72.  Three-Target Classification Training Histogram (T72, ZIL, SCUD) ............ 95 

Figure 73.  Three-Target Classification Training Plot (T72, ZIL, SCUD)....................... 95 

Figure 74.  Three-Target Classification Testing Histogram (T72, ZIL, SCUD) .............. 96 

Figure 75.  Three-Target Classification Testing Plot (T72, ZIL, SCUD)......................... 96 

 



 x

AFIT/GE/ENG/04-06 

Abstract 
 
 

     High Range Resolution (HRR) radar profiles map three-dimensional target 

characteristics onto one-dimensional signals that represent reflected radar intensity along 

target extent.  In this thesis, second through fourth statistical moments are extracted from 

HRR profiles and input to Fisher Linear Discriminant (FLD) classifiers.  Each FLD 

implements dimensionality reduction by projecting features onto the line yielding the 

greatest separation between classes.  Features extracted from HRR profiles for unknown 

targets are projected onto this line and classified as belonging to the nearest target (i.e., 

the relative probability that the projection is from the probability density of this target is 

maximized).  

  

     An iterative classification process is applied that gradually minimizes required a priori 

knowledge about the target data.  First, an HRR profile from a known target class and a 

known aspect angle is compared to an HRR profile from one of two target classes at 

different known aspect angles.  A determination is then made as to whether the second 

HRR profile is from a "same" or "different" target.  Second, a single HRR profile is 

extracted from a 360-degree aspect angle window and classified into one of two target 

classes with no a priori knowledge about the aspect angle.  Finally, a single HRR profile 

is extracted from an aspect angle window and classified into one of three target classes. 

  



 xi

     It is found that the second through fourth statistical moments of HRR profiles are 

useful features in the FLD classification of dissimilar targets and they provide reasonable 

discrimination of similar targets.  Greater than 69% correct classification for two-target 

scenarios and greater than 60% correct classification for three-target scenarios is obtained 

using a single HRR profile extracted from a full 360-degree aspect angle window.  A key 

contribution of this thesis is the demonstration that simple statistical moment features and 

simple linear classifiers can be used to effectively classify HRR profiles.  
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TARGET RECOGNITION USING LINEAR CLASSIFICATION 
OF HIGH RANGE RESOLUTION RADAR PROFILES 

 

I. Introduction 
 

1.1 Background 

 
    Airborne radar is a primary means of target identification in the absence of active 

emitters such as Identification Friend or Foe (IFF) systems or tactical data link 

communication systems.  High Range Resolution (HRR) radar profiles map the three-

dimensional physical characteristics of a target onto a one-dimensional signal.  The one-

dimensional signal represents the reflected radar intensity versus range along the target 

extent.  Using HRR profiles for classification is problematic because they are highly 

variable and depend on target aspect and elevation angles with respect to the airborne 

platform. 

 

1.2 Previous Work 

     Target classification research using HRR profiles requires the following.    First, 

useful HRR profile features must be identified and extracted for input to a classifier.  

Second, a classification scheme must be selected for training on the extracted features.  

Some possible feature sets and classification schemes are indicated below. 
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1.2.1 HRR Profile Features  

     In past work, numerous HRR profile features have been employed for classification.  

Recent research has used target HRR profile range bins as the primary feature set [15] 

[17].  Other research has focused on the scattering geometry [22] and polarization of the 

target signature [15].  Some work has used the target major intensity peaks [8] [10], 

wavelet transformations [5] and fractal dimension [18]. 

1.2.2 HRR Profile Classification 

     Classification methods using HRR profile features have employed, for example, 

clustering [12] [19], correlation filters in the time and frequency domains [17], and 

hidden Markov models [4].  Classification has also used a variety of neural networks, 

including radial basis function [17], multilayer perceptron [8], and adaptive time delay 

[8] designs. 

1.2.3 Literature Review 

     The Defense Advanced Research Projects Agency (DARPA) sponsored the Moving 

Target Features and Phenomenology (MTFP) program to discover, analyze, and evaluate 

HRR target features [1].  The MTFP program measured HRR signature data from seven 

moving targets taken from an airborne radar platform at aspect angles from 1 degree to 

360 degrees. 

 

     Under the MTFP program a nonlinear scheme to classify moving targets was 

developed [1].  It used two HRR profiles as input and calculated the probability that the 

two signals belonged to the "same" or "different" vehicles when compared to two 
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previously identified HRR profiles.  The scheme used a machine learning approach to 

track a target and attempted to discriminate HRR profiles independent of vehicle type.  

Two test hypotheses were of particular interest:  relative and absolute.  For the relative 

test hypothesis two HRR profiles were identified.  Subsequently, two new HRR profiles 

were randomly selected from a sample set bounded by an aspect angle differential of less 

than 10 degrees from the first input HRR profiles.   The two new input HRR profiles 

were matched uniquely as either a "same" or "different" target relative to the previously 

identified HRR profiles.  The classifier had a 93 percent correct decision rate given these 

parameters [1].  For the absolute test hypothesis the second HRR profiles were evaluated 

independent of the competing hypothesis used in the relative test case and thus unique 

matching to the previously identified tracks was not required.  This procedure greatly 

reduced the processing time, but classifier performance dropped significantly to a 40 

percent correct decision rate when multiple targets were considered [1]. 

     Classification using Multinomial Pattern Matching achieved a 74% success rate with 

HRR profiles from three airborne target classes [21].  Sampling for classification was 

restricted to a five-degree-by-five-degree aspect and elevation angle window. 

1.3 Problem Statement 

     The performance of target HRR profile classifiers is highly dependent on both the type 

of features extracted and the classifier chosen.  As stated above, there has been extensive 

research involving numerous feature sets and classification schemes.  This thesis 

develops a linear target HRR profile classifier motivated by the scenario described in [1].  

A Fisher linear classifier is trained using a subset of measured data from the MTFP 



 4

program dataset and tested using a different subset of the same data set.    The second 

through fourth moments of the target HRR profiles are analyzed for effectiveness as 

classification features.  

1.4 Objectives 

     A simplified approach to target HRR profile classification is investigated.  Effective 

neural network classifiers typically have an associated credit assignment problem: it is 

not possible to determine the relationship among the input features that it employs to 

implement the classification [4].  Linear classification schemes offer the considerable 

advantage that these relationships are readily determined.  In this thesis the second 

through fourth moments of each HRR profile is used as the feature set.  Through an 

iterative approach, feature extraction and the application of a linear classifier culminates 

in the ability to identify a randomly selected HRR profile and associate it with one of 

three possible targets.  The HRR profile sample is extracted from a set of measured data 

on three known targets, over a 1-degree to 360-degree range of aspect angles.  The goal is 

to show that properly selected features processed with an appropriate linear classifier 

yields results comparable to or exceeding those obtained using more complex features 

and classifiers. 
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1.5 Materials and Equipment 

     The MTFP dataset is used exclusively as the data source.  The Application Program 

Interface (API) is used to extract and sort data from the MTFP dataset [7].  Algorithms 

are developed on a personal computer with Matlab® Version 6.5 software using the 

signal processing and statistical toolboxes.   

1.6 Thesis Organization 

     Chapter II provides an overview of relevant pattern recognition concepts, radar HRR 

profiles, and the MTFP dataset.  Chapter III discusses the methodology, and Chapter IV 

contains the experiment results and analysis.  The last chapter presents conclusions and 

suggestions for future research. 
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II. Background 

2.1 Pattern Recognition 

     Pattern recognition conventionally involves calculating probability densities for each 

class of data so that any point in the feature space has a greater a posterior probability of 

being in one class than other classes.  Data used for target recognition contains numerous 

features, some of which are readily apparent to the human eye, while others are less 

evident.  Pattern recognition systems attempt to identify distinct classes through the 

extraction of useful and significant features.  Less helpful or irrelevant features are 

discarded as noise.  This thesis uses HRR profiles exclusively as input for classification. 

2.1.1 Feature Extraction 

     Pattern recognition requires extraction of attributes that will be most advantageous for 

good classification.  For HRR profiles the Doppler data is not applicable and is discarded, 

but the magnitude of the signal is retained.  After constructing the HRR profile, specific 

HRR profile features are extracted, further simplifying the representation of the original 

radar return signal.  These features serve as input to the designated target recognition 

classifier.  The number of features must be sufficient to yield separable classes at the 

output.  Selecting effective features reduces processing time and can greatly enhance 

classifier performance, and it is perhaps the most critical step in the pattern recognition 

process. 
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2.1.2 Classification 

     Classification of the extracted features is the final step in pattern recognition and is 

ordinarily performed within a statistical framework.  The extracted features are analyzed 

for patterns or trends that categorize the input data into a specific class.  

     Statistical pattern recognition often encounters the “curse of dimensionality,” in that 

large numbers of features reduce classification performance.  The selected features 

constitute a feature space that can easily exceed the three dimensions which humans can 

visualize.  The number of dimensions in this feature space may be reduced by projection 

into a lower dimensional space.  There are several common methods for dimension 

reduction.  Two will be examined further:  Principal Components Analysis (PCA) and 

Fisher Linear Discriminant Analysis (FLD). 

2.1.3 Principal Component Analysis 

     PCA, also known as the Karhunen-Loeve transform in function space, is frequently 

used for dimension reduction.  Assume data representing measured HRR profiles exists 

for one class is extracted from a limited range of aspect angles (less than 90 degrees) as 

viewed from the airborne platform.  Further assume that the samples in the class are 

represented by  n vectors{x1,x2,…,xn}, where each vector represents k distinctive 

measurements or features.   In its current state, this sample is characterized in k-

dimensional space, but PCA can represent the entire class of n vectors in k' < k 

dimensional space to optimally characterize the class.  Although the dimension reduction 

may be useful, PCA does not necessarily make it possible to discriminate between 

classes, and it may discard useful discriminating dimensions.  A popular example 
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involves performing PCA on features that characterize data consisting of samples of the 

letter O and the letter Q.  A reduced dimension characterization keeps the coarse features 

of the letters intact but omits the tail from the Q, which makes it impossible to distinguish 

the O from the Q in the new feature space [4].  Therefore, the use of a class discriminator 

is more advantageous. 

2.1.4 Fisher Linear Discriminant Analysis 

     FLD analysis not only characterizes a class of data through dimension reduction, but it 

also projects the data onto a line that yields the greatest separation between classes.  The 

challenge lies in orienting the line so that the data projected onto it are clearly separated 

[6]. 

     For each vector x = {x1, x2, ...,xN} of D-dimensional features, where N1 of the 

vectors are in class 1ω  and N2 are in class 2ω  and N = N1 + N2, FLD obtains a scalar 

value y by projecting x onto a line,   

xwy T= , (1) 

where the vector w specifies the slopes of the line.  Infinitely many lines are possible, but 

FLD finds the line that maximizes the separability of between-class scalar values as 

shown in Figure 1. 
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                                             (a)                                                          (b) 

Figure 1. Fisher Linear Discriminator Example 
A two-dimensional case demonstrating choices of a discriminating line. (a) Classes not 
clearly separated (b) Classes clearly separated by the FLD line.  Figure from [6]. 

      

     One measure of separation between the projections is the difference between the 

means µ1 and µ2 of the feature vectors in each class after projection to the line, so that the 

function maximized is 

     )(w~~)w(J 21
T

21 µ−µ=µ−µ= . (2) 

where the D-dimensional sample mean is defined by 

∑
∈

=µ
iDx

i
i

i x
n
1

. (3) 

However, the distance between the projected means does not account for the standard 

deviation within the classes.  Therefore, maximizing the distance between the means 

could still yield minimal class separation, as demonstrated in Figure 2. 
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Figure 2.  Comparison of Class Separability Along Different Axis 
Maximizing the projected distance between class means does not guarantee greater 
class separability.  For the case above, the projection onto the axis of greatest class 
mean difference yields significant between class overlap. Figure from [6].     

  

The sample mean for the projected points is given by     

i
T

Dx

T

i

yyi
i

w

xw
n
1

y
n
1~

i

i

µ=

=

=µ

∑

∑

∈

∈

 (4) 

and is simply the projection of µi. 

  The distance between the projected means from equation (2) is 

)(w~~
21

T
21 µ−µ=µ+µ . (5) 
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     The difference between the means should be large relative to some measure of the 

standard deviations for each class.  Therefore, define the scatter for the projected samples 

by  

∑
∈

µ−=
iYy

2
i

2
i )y(s~ . (6) 

 

     FLD seeks to maximize the separation between projected classes by maximizing the 

criterion function, 

2
2

2
1

2

21

s~s~
~~

)w(J
+
µ−µ

= , (7) 

where 2
1s~ and 2

2s~  are proportional to the variances of the projected points in each class 

about their means.  Thus, the ratio of squared inter-class separation to the sum of the 

squares of the intra-class variance separations is maximized as shown in Figure 3. 
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Figure 3. Fisher Linear Discriminant Projection Example 
The Fisher linear discriminant identifies a projection where intra-class samples are 
projected close together while the inter-class projections are projected far apart [6]. 
      

     It is necessary to express J(w) as an explicit function of w in order to find w.  

Therefore, define the scatter matrices equivalent to the scatter in the projection as 

∑
∈

µ−µ−=
iDx

T
iii )x)(x(S  (8) 

and 

21W SSS += . (9) 

The matrix WS is proportional to the sample covariance matrix and is called the total 

within-class scatter matrix.   

 

 

 

Intra-class 
separation 

Intra-class 
separation 

Inter-class
separation
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     The scatter of the projection is expressed as a function of the scatter matrix in the x 

feature space. 

;wSw

w)x)(x(w

)wxw(s~

i
T

Dz

T
ii

T

Dx

2
i

TT2
i

i

i

=

µ−µ−=

µ−=

∑

∑

∈

∈

 (10) 

therefore the sum of these scatters can be written  

wSws~s~ W
T2

2
2

1 =+ . (11) 

Similarly, the separations of the projected means obeys 

,wSw
w))((w

)ww()~~(

B
T

T
2121

T

2
2

T
1

T2
21

=

µ−µµ−µ=

µ−µ=µ−µ

 (12) 

where the matrix BS is the between-class scatter matrix defined as 

T
2121B ))((S µ−µµ−µ= . (13) 

Combining yields, 

     
wSw
wSw)w(J

w
T

B
T

= . (14) 
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     Maximizing the between-class scatter (numerator) and minimizing the within-class 

scatter (denominator) for optimal class discrimination is achieved as follows: 

     

[ ]

[ ] [ ] [ ] [ ]
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[ ]
[ ]

[ ]
[ ]
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−

 (15) 

 where solving the generalized eigenvalue problem )JwwSS( B
1

W =−  yields 

     )(S
wSw
wSwmaxargw 21

1
w

W
T

B
T

µ−µ=
⎭
⎬
⎫

⎩
⎨
⎧

= − . (16) 

 

     For the two-class case C = 2 there is only one discriminant function that projects the 

D-dimensional space onto the C-1 dimensions.  However, in the general case where the 

number of classes is C > 2, FLD reduces the dimensionality from D-dimensions to C-1 

dimensions [4].  In this case, the projection vectors placed as columns in a matrix W 

    [ ],  w...     wwW
xWyxwy

1-c21

TT
i

=
⇒⇒=

 (17) 
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The generalized total within-class scatter matrix is now 

    
,SS

)x)(x(S

c

1i
iW

Dx

T
iii

i

∑

∑

=

∈

=

⇒µ−µ−=

 (18) 

where Di is the set of samples drawn from class i.  The generalized case for the total 

between-class scatter matrix SB is defined as 

    T
ii

c

1i
iB ))((NS µ−µµ−µ= ∑

=

, (19) 

where Ni is the total number of samples from class i and µ is the mean of individual class 

means µi restated here from equation (3) 

∑
∈

=µ
iDx

i
i

i x
n
1

 (20) 

  Transforming these matrices to y-space yields 

    
,WSW

)~~)(~~(NS~

B
T

T
ii

c

1i
iB

=

µ−µµ−µ= ∑
=  (21) 
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W
T

c

1i Yy

T
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i

=
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The criterion function is then 
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maximizing the between-class matrix SB and minimizing the within-class matrix SW 

yields 

    [ ]
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     Equivalently, the optimal projection matrix W consists of columns of eigenvectors 

corresponding to the largest eigenvalues in the eigenvalue problem [13]   

    iWiiB wSwS λ=  (25) 

     This problem is addressed by first computing the eigenvalues as the roots of the 

characteristic polynomial |SB - λiSW| = 0.  Solving for the wi yields  

    0w)SS( iWiB =λ−  (26) 

See Figure 4 for an illustration that uses three classes. 
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Figure 4.  Example of Three-Class Fisher Linear Discrimination 
Optimal results are obtained by minimizing the within-class matrix SW and maximizing 
the between-class matrix SB [6].  
 

     There are some limitations to using FLD.  The discriminatory information must lie in 

the mean for FLD to succeed, and highly overlapping multi-model distributions reduce 

classification performance as illustrated in Figure 5 [13]. 
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                (a)                                           (b)                                              (c) 

Figure 5.  Fisher Linear Discrimination Examples 
Fisher Linear Discriminant analysis fails if the class discriminatory information is not 
found within the mean.  (a) The mean is identical in both classes and discrimination is not 
possible, (b) and (c), Class overlap prevents FLD discrimination [6].  

 

2.1.5 Parzen Windows Probability Density 

     Parzen windows estimation is a nonparametric probability density estimation 

technique often used in classification.  It approximates a density for a set of data points 

using a linear combination of a given kernel function centered on each of the points [13].       

In this research, the kernel is the Gaussian radial basis function   

 

    ⎟
⎠

⎞
⎜
⎝

⎛
σ
−−

= 2

2
i

i 2
)xx(exp)x,x(K , (27) 

where xi is the value of the ith sample.  Gaussian kernels force the weighted effect of a 

kernel on a neighbor to decrease exponentially with the square of the distance, rendering 

distant points irrelevant.  The width σ of the chosen Gaussian controls the smoothness of 

the estimated density and were modified to approximate marginal unimodal densities for 

the target classes.  An example of a Parzen windows estimation is shown in Figure 6.   
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Figure 6.  Parzen Window Example 
A Gaussian density is placed on every data point projection on the FLD line and the 
densities are summed and divided by the total number of data points.   In this example, 
sigma is chosen to create a bi-modal density, which means that there are two points 
where it's first derivative is zero.  
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2.2 High Range Resolution Radar 

     The review below focuses on topics relevant to High Range Resolution Radar as 

applied in this thesis.   

2.2.1 High Range Resolution Profiles 

     A HRR profile used in this thesis is an n-dimensional vector x = (a1,a2, ...,an), where  

ai ∈{0,1,...,199}.  The position relative to the line of sight from the radar to the target is 

divided into range bins.  Each element ai in the HRR profile vector x is the magnitude of 

the total radar return in the ith range bin.  This thesis assumes that detection of the target 

has occurred and focuses on classification of a set of target HRR profiles.   

     For any target there are many possible HRR profiles due to the fact that target HRR 

profiles are not persistent throughout detection.  Targets contain thousands of radar 

scatter points, and their net effect on the echo detected at the radar receiver changes 

significantly with the aspect and elevation angles of detection.  Figure 7 illustrates a 

window of possible data extraction for an airborne target.  Figure 8 reveals how a simple 

aspect angle change occurring in a fraction of a second can affect the HRR profile 

measured by a radar receiver.   
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Figure 7.  Window for Extraction of High Range Resolution Profile 
Example of one viewing window for High Range Resolution profile extraction.  It is 
possible to view an airborne target from many combinations of aspect and elevation 
angles [11].  
 

 

 

Figure 8.  High Range Resolution Profile Variation 
Example of High Range Resolution profiles extracted from a moving target over a 
period of one second.  Each profile is taken 200 milliseconds apart [11].  
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     Although many HRR profiles exist for any one target, some features can persist for at 

least some range of aspect angles.  A target radar echo return is the accumulation of 

thousands of scatter centers, and it is normal for some scatter centers to dominate the total 

return at the receiver when viewed from certain angles.  For example, a tank turret may 

generate a distinctive HRR profile when viewed from a 0-degree (head-on) position or 

from a 90-degree (side view) position.  However, the same tank viewed from a 180-

degree position (tail-on) may not have any noticeable return from the turret because the 

rest of the tank may obscure the turret. 

 
     Target recognition using HRR profiles relies on extracting persistent features for 

classification.  In the example above, it may be easy to distinguish a tank from a civilian 

target such as a minivan by using the HRR profile feature due to the tank turret as a 

distinguishing characteristic.  Unfortunately, the differences between military targets are 

usually subtle and more difficult to distinguish.  This thesis examines the application of 

Fisher linear discrimination for target classification using moment features of HRR 

profiles.   

 

2.3 HRR Profile Moments 

     HRR profiles for targets are complex and difficult to predict.  However, certain 

characteristics may be persistent for at least small windows of aspect angle about the line-

of-sight.  Since the HRR profile length can be used to distinguish small targets from large 

targets, it is natural to speculate that the extraction of statistical characteristics for the 

length and shape of the HRR profile may provide good features for target classification.  
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Moments capture geometric information, and normalized HRR profiles can be viewed as 

one dimensional probability density functions (PDF).   The first through fourth moments 

are used in this work.  When applied to a one-dimensional probability density, the first 

moment, or mean, measures location.  The mean position of a set of samples in units of 

sample number is  
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y
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, (28) 

where n is the total number of samples and yi is the value of the ith sample. 

     The second moment, or variance, of a probability density measures its extent.  A small 

variance implies that the samples are clustered near the mean and a large variance 

indicates that the density is either spread out thinly or clustered at a position some 

distance from the mean.  The variance of sample number is       
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     The third moment, or skewness, measures the asymmetry of a density; see Figure 9.  

The skewness of sample number is   

    
∑

∑

=

=

µ

µ−
=µ n

1i
i

2/3
2

n

1i
i

3
1

3

y

y)i(
 (30) 
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(a) (b) (c) 

Figure 9.  The Third Statistical Moment--Skewness 
A positive skew indicates that the density has more probability in the positive direction 
while a negative skew indicates probability concentrated in the negative direction [9].   
     The fourth moment, or kurtosis, is a measure of the size of the density tails.  Densities 

with larger tails are leptokurtic and densities with small tails are platykurtic.  Kurtosis is 

defined by 
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                                        (a)                                                (b) 

Figure 10.  The Fourth Statistical Moment--Kurtosis 
The two densities above have the same variance and skew but different kurtosis [9].   
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2.4 Moving Target Features and Phenomenology (MTFP) Program 

     Data from the DARPA Moving Target Features and Phenomenology (MTFP) program 

[1] are used for both training and testing the linear classifier.  There are twelve target 

configurations using seven platforms:  T-72 Tank, BTR-80 Armored Personnel Carrier, 

Mobile SCUD Launcher, M-2 Infantry Fighting Vehicle, ZIL-131 Truck, 2S1 Self 

Propelled Howitzer, and ZSU-23 Anti-Aircraft Gun.  The twelve configurations are 

shown in Figure 11 and resulted from adding antennas, skirts, or reactive armor to the 

platforms.   

 

Figure 11.  Target Configurations for the MTFP Program 

Measured data is collected from twelve target configurations using seven targets for the 
DARPA Moving Target Features and Phenomenology (MTFP) program [14]. 
 

2S1 BTR-80 w/o antenna BTR-80 w/ antenna   M-2 

SCUD-TEL T-72 w/o skirts T-72 w/ skirtsT-72 w/ reactive armor

ZIL - Bed Unloaded ZIL - Bed Loaded ZSU - Ant. Not Rotating ZSU - Ant. Rotating
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     The MTFP test setup uses a moving target on a 200-meter diameter track, and data is 

collected for four revolutions of each target configuration.  The airborne platform has a 

side-looking two-channel Synthetic Aperture Radar operating in X-band (9.66 GHz) with 

a 1953 Hz pulse repetition frequency and one-foot resolution.  Data is collected at the 

depression angles, slant ranges, and altitudes indicated in Figure 12. 

 

Figure 12.  MTFP Test Set Up 
A moving target circles a 200-meter circular track while the airborne platform flys in the 
opposite direction [14].   
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III. Methodology 

3.1 Introduction 

     There are five steps in this research.  The first step involves extracting data from the 

Moving Target Features and Phenomenology (MTFP) program data set.  The second step 

involves pre-processing the data for further use in training and testing.  The third step 

requires training and testing a linear classifier using significant a priori knowledge.  The 

fourth step expands on results of the third step and attempts to recognize two target 

classes with minimal a priori knowledge.  The final step expands results from step four to 

include three-target classification.  This thesis effort generated several thousand lines of 

Matlab® code; the final Matlab® software product allows for operator initiated options 

and is easily adaptable for future research. 

3.2 Data Extraction 

     The measured MTFP data contains ancillary information, or attributes, that explain 

test measurement conditions such as elevation, radar operating frequency, pulse repetition 

frequency (PRF), aspect angle, depression angle, aircraft speed and target speed, etc.  The 

Data Object Application Program Interface (API) [7] facilitates the standardized storage 

of this data and is the primary interface used in this research.  The measured data is 

queried and sorted by aspect angle for each target under consideration.  The depression 

angle and the target configuration are not considered during sorting to permit less 

restricted data set (i.e., all depression angles and target configurations are used).  After 

data is extracted it is split into separate training and testing sets.  The primary data object 
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of interest is the HRR profile and the attribute of primary interest is the aspect angle at 

the time of measurement. 

3.3 Data Pre-Processing 

     The measured data requires pre-processing prior to classification.  The HRR profiles 

are extracted and input to Matlab® as a vector where the element number is x-axis 

position (1:200) and the element value is the y-axis decibel value.  This assignment 

creates a range versus magnitude plot as seen in Figure 13 (a).  The start range bin varies 

from target to target and profile to profile and depends on the true distance from the 

airborne platform to the target at the time of measurement.  Among the attributes 

available in the MTFP data set is a target mask for each profile, Figure 13 (b).  The target 

mask cuts the true target HRR profile from the measured data and zeros out all non-target 

values as shown in Figure 13 (c).  Normalization along the y-axis scales the magnitude 

values in each target bin by a constant that forces the total area under the profile to equal 

one, creating a normalized power spectral density representation of the radar return.  

Although there is no associated random variable, the normalized HRR profile is regarded 

as a probability density function; Figure 13 (d).    
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(a) (b) 

 
 

(c) (d) 

Figure 13.  Application of Target Mask to HRR Profile Data 
Here (a) is an example of measured data HRR profiles extracted from the MTFP data set, 
(b) is a target mask which identifies the range bins in which the target is located, (c) 
shows the resulting masked profile with extraneous noise removed, (d) is the profile 
normalized to form a PDF.                       
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3.3.1 HRR Profile Scaling 

     A typical PDF normalized from a linear scale HRR profile, Figure 14 (a), is compared 

to a PDF normalized from a decibel scale HRR profile, Figure 14 (b).  The decibel or 

logarithmically scaled profiles retained and highlighted distinguishing characteristics 

better than the linear scale profiles.  Generally, as discussed in Chapter IV, classification 

using PDFs normalized from decibel-scaled HRR profiles yields the best results.       

 

 

(a) (b) 

Figure 14.  Comparison of Linear and Decibel Scaled PDF  
(a) PDF normalized from a linearly scaled HRR profile, (b) PDF normalized from decibel 
scaled HRR.  Both PDFs originated from the same measured data. 
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3.3.2 Moment Extraction 

     The moments for each profile replace the 200 element HRR profile vector with a four 

element feature set vector consisting of the first through fourth moments.  Since only 

these moments are used for classification, the result is a three-dimensional feature set 

representation of the HRR profiles.  Figure 15 shows a comparison of the three-

dimensional feature set for two similar targets, and Figure 16 shows a two-dimensional 

comparison of the 3rd and 4th moment feature set for four targets.  

 

 

Figure 15.  Three-Dimensional Comparison of Moment Feature Set  
The moment feature set for a BTR-80 and an M2.  With the exception of a few outliers, 
the majority of the data points are clustered closely and classification is difficult.   

0
0.5

1
1.5

2
2.5 

x 10 4 
-10000

-5000 
0 

5000 
0 

5000 

10000 

15000 

2nd moment

 

3rd moment 

4th moment 

BTR80 
M2 



 32

Figure 16.  Four Target Moment Comparison 
The third and second moment distributions for four targets.  There is little noticeable 
distinction between three of the four targets.   
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3.4 Classification Training Matrix Development 

     Fisher Linear Discriminant classification projects data from a multi-dimensional space 

onto a line that maximizes separation between-classes and minimizes separation within-

classes.  Thus the scalar values of the classes along the line yield the greatest separation 

between them.  The projected values may be obtained directly, without coordinate 

transformations that require finding eigenvalues and eigenvectors, by making a linear 

combination of the training points that approximates different constants for different 

training classes using least squares[2].   

 

     For a two-class classification, the feature matrix is 
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 whereα andβ indicate two classes, the first subscript is sample number, and the second 

subscript is feature number. 
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     Also, the two-class vector is  

[ ]TN1N1 1111y ⋅⋅⋅−⋅⋅⋅−= . (33) 

      

     The elements of this vector need not be assigned a ± 1 value, and are in fact modified 

significantly in the three-target classification scenario.  The coefficient vector is       

  yXc 1−= , (34) 
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where there are (n + 1) coefficients because of the bias constant 1 added to the feature 

matrix.  Solving for the coefficient vector completes the first part of classifier training.  

This vector is then multiplied by a feature matrix to obtain a training projection vector, 

the elements of which are the values of the training points projected onto the FLD line.  

Parzen windows analysis is performed on the projected points and a decision boundary is 

assigned, see Figure 17. 
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Figure 17.  Example of a Training Matrix Projection Output 
The training matrix output is a coefficient vector.  This vector is multiplied by a feature 
matrix to obtain a vector of values projected onto the FLD line, which here is the x-axis.  
Gaussian Parzen window density estimate is used to produce a unimodal density from the 
projected points for each class.  Zero would be an appropriate decision boundary. 
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3.5 Classification Testing Matrix Development 

     A testing matrix is configured as the training matrix and uses feature samples from the 

classes of interest.  The inner product of the calculated coefficient vector and the test 

matrix X generates values projected onto the Fisher line.  These values may separate the 

classes sufficiently.   

3.6 Hypothetical Two-Target "Same" or "Different" Scenario 

      Two known target classes are examined, Target A and Target B.  The feature set of 

moments from an HRR profile of Target A is compared to the moments from a second 

HRR profile of Target A or Target B.  The first input HRR profile feature set is from 

Target A at a known aspect angle of θ degrees.  The second input HRR profile feature set 

is from a known rotated aspect angle (θ+ β) degrees from one of two target classes.  The 

linear classifier compares the two inputs and determines if the second HRR profile is the 

"same" as or "different" from the first HRR profile.  Figure 18 illustrates this scenario. 
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Figure 18.  Hypothetical Scenario for Moving Target Classification 
The first HRR profile is extracted from a target at a known aspect angle and then 
compared to an HRR profile from either a "same" or "different" target at a known rotated 
aspect angle. 
      

    Samples are collected from the MTFP data set HRR profiles and used to form two 

teams: "same" and "different".  The "same" teams consist of a moment feature set 

extracted from a target HRR profile at an angle θ combined with another moment feature 

set extracted at an angle (θ + β) from the same target.  Target A and B both have "same" 

teams formed.  The "different" team contains a moment feature set extracted from a target 

HRR profile at an angle θ for Target A combined with a moment feature set extracted at 

an angle (θ + β) from Target B.  Therefore, each team, whether "same" or "different", 

consists of three moments from the initial angle HRR profile and three moments from the 

rotated angle HRR profile, resulting in a six dimension moment feature space.  Figure 19 

shows the distribution of the sample data into the teams.  
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Figure 19.  HRR Profile Sample Distribution Tree 
HRR profiles are extracted from two targets and separated for training and testing.  The 
individual "same" teams from each target consist of half the number of samples used to 
form the "different" team.  
      

     A "rule of thumb" for training data is to use 30 samples of each class of data.  This 

"rule of thumb" is generally adhered to in this research, although increased sampling is 

used if it improves classifier performance.   

 

     For the "same" versus "different" data, the availability of the minimum required 

samples depends on the predetermined sample window θ, the target rotation angle β, and  

the target sets used for comparison.  To avoid overlapping samples used for training and 

testing, sufficient samples are sought within the specified parameters for each target.  If 

the predetermined sample window is not sufficient for the number of samples required, 

the sample window size is increased incrementally until the minimum sampling 

requirements are met.   
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     For a two-class classification using the "same" and "different" teams, the feature 

matrix is      
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(36) 

whereα  and β represent Target A and B respectively.  The first subscript is the sample 

value while the second subscript designates the HRR PDF moment value, and N is the 

number of minimum samples required (usually 30).  The second through fourth moments 

from the initial angle HRR PDF are represented by the second subscripts 1, 2, and 3.  The 

second through fourth moments from the rotated angle HRR PDF are represented by 

subscripts 4, 5, and 6.  The upper half of the feature matrix contains "same" teams 

representing Target A and Target B.  Only half of the minimum number of samples is 

necessary for each "same" team because two teams are used.  A constant column with a 

value of "1" is added to the feature matrix to represent the y-intercept, increasing the 
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feature dimension by one (to seven).  The "same" and "different" classes are pre-assigned 

a scalar value on the projected FLD line. Each class has a scalar value of negative 1 

("same" team) or a positive 1 ("different team") on the line, which forces each class to a 

separate point on the FLD line.  Thus the projection vector is  

[ ] ,111111y T
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(37) 

and the coefficient vector is      

  yXc 1−= , (38) 
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3.7 Classifier Simulation Loop 

     The aspect angle window is the range of aspect angles from which samples are 

collected for any one training or test scenario.  For example, 30 samples may be collected 

from a narrow sampling such as 0° to 10° aspect angle for both targets.  The window may 

be large, such as a 0° to 180°, and its center is also considered.  For example, given a 10° 

aspect angle window from which to extract data samples, the classifier increments 

through 10° aspect angle windows with the center of the window ranging from 1° to 356° 

in 5° increments.  Classifier performance is evaluated for robustness at different window 

sizes and at all aspect angles around the target. 

 

3.8 Two-Target and Multi-Target Scenarios 

     The classifier compares two and three targets with no a priori knowledge of target 

rotation.  Training and testing is similar to that described in the "same" versus "different" 

scenario above.   
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IV. Results 

4.1"Same" Versus "Different" Team Results 

      The "same" versus "different" team hypothesis is applied to a combination of six 

targets, two targets at a time: BTR-80, T-72, ZSU-23, ZIL-131, M-2, and SCUD Mobile 

Launcher.  The 2S1 data is unreliable and is not used.  First, the minimum number of 

samples for each target is initially set at 30 and subsequently raised to 45, 60, and then 

90.  The results obtained with greater than 45 samples remained consistent and only 

served to increase processing time.  Therefore, this number is used to obtain all "same" 

versus "different" results.  The "same" versus "different" hypothesis is as follows, the 

first HRR profile is from known Target A at aspect angle θ and the second HRR profile is 

from either Target A or Target B rotated at an aspect angle (θ +β) from the original HRR 

profile.  In training, the minimum number of samples from each target are collected from 

a window centered at initial angle θ, and samples are also collected for the rotated target 

angle (θ +β).  If necessary, the sample window automatically expands until the minimum 

number of samples desired are retrieved from the data set.  The center of the window is 

incremented around the 360° aspect angle view of the targets to ensure full coverage, 

which validates classifier robustness at different aspect angles and relative rotations.  To 

establish a baseline parameter, all two-target combinations are compared with a 0° target 

rotation β value.   Figures 20-25 show some baseline results.  A complete listing is in 

Appendix A. 
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Figure 20.  "Same" versus "Different" Comparison of BTR-80 and SCUD 
"Same" versus "Different" comparison of BTR-80 and SCUD with 0° target rotation. 
This result baselines the best possible classifier performance using these two targets. 
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Figure 21.  Histogram of BTR-80 and SCUD with 0° Target Rotation 
The average 87% classification rate is highlighted in the dotted-dash line.  This high 
success rate is expected for dissimilar targets. 
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Figure 22.  "Same" versus "Different" Comparison of BTR-80 and M2 
"Same" versus "Different" comparison of BTR-80 and M2 with 0° target rotation.  This 
result baselines the best possible classifier performance using these two targets. 
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Figure 23.  Histogram of BTR-80 and M2 with 0° Target Rotation 
The average classifier 83% success rate shows good separation between targets on the 
FLD line. 
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Figure 24.  "Same" versus "Different" Comparison of BTR-80 and T-72 
"Same" versus "Different" comparison of BTR-80 and T-72 with 0° target rotation.  This 
result baselines the best possible classifier performance using these two targets. 
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Figure 25.  Histogram of BTR-80 and T-72 with 0° Target Rotation 
The average classifier 78% success rate highlights the increased similarity between 
targets and the diminished classifier performance. 
      

     The best performance occurs when dissimilar targets are compared, such as the BTR-

80 versus the SCUD (Figures 20 and 21).  Classifier performance diminishes when 

similar targets are compared such as the BTR-80 and M-2 (Figures 22 and 23) or the 

BTR-80 and T-72 (Figures 24 and 25).  There is significant difference in classifier 

performance when target rotation β is greater than 0°.  However, overall classifier 

performance is independent of the actual rotation angle.  Figures 26 and 27 show the 

classifier performance for the BTR-80 and T-72 at angle rotations β = 10, 45, 60, and 

90°. 
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Figure 26.  Comparison of BTR-80 and T-72 with Different Rotation Angles 
Plots of BTR-80 and T-72 classification with target rotation equal to (a) 10°, (b) 45°, (c) 
60°, and (d) 90°.  Performance does not vary significantly with increased rotation because 
training and testing discriminate between pairs of moments at different angles. 
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Figure 27.  Histograms of BTR-80 and T-72 at Different Rotation Angles 
Histograms of BTR-80 and T-72 classification simulation with target rotation equal to 
(a) 10°, (b) 45°, (c) 60°, and (d) 90°.  Performance does not vary significantly with 
increased angle rotation. 
 

     The classifier performs well with target rotation introduced.  However, this result 

simply reflects the accuracy of a priori knowledge introduced in training.  The relative 

rotation angle does not change results significantly because the classifier discriminates 

between two sets of moments:  those in the initial HRR profile aspect angle (θ) and those 

in the rotated HRR profile aspect angle (θ + β).  The FLD line is recalculated with every 
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simulation and only determines a discrimination for a "same" or "different" target for 

those samples.  The results indicate that applying FLD analysis with HRR profile 

moments provides a solid foundation for classification.  As expected, the classifier 

performs better for dissimilar target teams.  However, the a priori knowledge available in 

this hypothesis is unrealistic in a typical scenario, and a more realistic classification 

scheme is necessary.    
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4.2 Two-Target Classification 

     This scheme classifies two targets with minimal a priori knowledge.  The classifier 

uses moments from a two-target data set of HRR profiles within a predetermined sample 

aspect angle window.  The center of the window is incremented through a 360° target 

aspect angle view.  Training and testing is performed and results are recorded for every 

increment of the center of aspect angle window.  The classifier then expands the sample 

aspect angle window and repeats the process.  The "same" versus "different" matrix is 

simplified in that n is now three since an a priori rotation is no longer used and only the 

second, third, and fourth moments from each team are used for classification.  Using a 

leave-one-out methodology during initial training and testing, the results reveal that using 

only two moments for classification yields approximately the same performance as using 

three moments.  Further analysis shows that the third and fourth moments provide 

slightly better discrimination in some two-target comparisons.  Thus the two-target 

feature matrix is  
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and the two-target coefficient vector is  
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     The two-target classification objective is to identify a coefficient vector in training 

that can be successfully applied to identify a single HRR profile from within a large 

aspect angle window.  Ideally, there is a coefficient vector that can be applied to any 

HRR profile from a two-target class data set containing samples from a 360° aspect angle 

field-of-view and no a priori knowledge of a previous HRR profile is required.  The 

results show that the FLD classification method has a 65% success rate in a two-target 

class environment, where HRR profiles are extracted from up to a 360° aspect angle 

window. 

     Classification training occurs similarly to the method used in the "same" versus 

"different" team hypothesis.  Two targets are selected for comparison.  The HRR profiles 

are selected from an aspect angle window that expands from 10° to 360° in 10° 

increments.  For each successive expansion of the sample aspect angle window, the 

center of the sample window pivots around the 360° aspect angle view in 10° increments.  
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The coefficient vector is calculated for each pivot of the center of the sample window, 

and the mean results for each aspect angle window is calculated upon completion of the 

pivot.  The training produces a mean coefficient matrix where the rows represent the 

respective aspect angle window coefficient vector sequentially from the smallest window 

to the largest.  Thus, the output from two-target classification training is the coefficient 

matrix  
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          Testing is performed by extracting samples from the same aspect windows and 

pivots described above, forming a two-target test matrix, and obtaining projections on the 

FLD.   
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     The coefficient vector from the 360° window should provide the greatest variability in 

classifying HRR profiles.  Testing is accomplished with twice as many HRR profiles 

extracted from the MTFP data set as are used to perform training.  The success rate for 

each increment around the 360° target aspect angle window is calculated and tabulated.  

The results are presented in two types of figures.  The first type shows average classifier 

success rate with respect to the center of the aspect angle window.  The second type 

shows average classifier success rate as the aspect angle window increases in size.  

Results not presented in this chapter are included in the Appendix. 
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Figure 28.  Aspect Angle View Classification Results for BTR-80 and ZIL-131 
Classification results for comparison of BTR-80 and ZIL-131.  The classifier pivots a 
sample window around a 360° aspect angle view of the targets.  Results show overall 
75% average successful classification and highlight areas where the targets look similar 
in moment feature space.  In the example above, the targets are difficult to classify at a 
260° aspect angle. 
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Figure 29.  Sample Window Size Classification Results for BTR-80 and ZIL-131 
Classification results for comparison of BTR-80 and ZIL-131.  The classifier gradually 
expands the aspect angle window from which HRR profiles are selected for comparison.  
These results show that classification success remains steady for all window sizes. 
 

 

 

 

 



 58

50 100 150 200 250 300
30

40

50

60

70

80

90

100
T72/BTR80

S
uc

ce
ss

 R
at

e 
(%

)

Center Aspect Angle

Testing Results
Testing Mean (58%)

Figure 30.  Aspect Angle View Classification Results for T-72 and BTR-80 
Classification results for comparison of T-72 and a BTR-80.  The classifier has an overall 
58% average successful classification rate.  The figure highlights classification difficulty 
at aspect angles of 300° and 360°. 
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Figure 31.  Sample Window Classification Results for T-72 and BTR-80 
Classification results for comparison of T-72 and BTR-80.  Once again, the classification 
remains steady for all window sizes.  However, the targets are very similar in moment 
feature space and nearly indistinguishable from one another. 
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Target Training Testing
ZSU23 72.2 67.2
ZIL131 79.0 71.8
BTR80 75.2 67.8
SCUD 83.8 78.4
M2 74.6 65.4
T72 70.4 63.4

Average: 75.9 69.0  

Table 1.  Average Classification Results Using FLD in Two-Target Scenario 
 
 

     Two-target classification has a 69% average correct classification rate across all target 

combinations, which demonstrates the robustness and applicability of moment features 

for FLD classification.  
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4.3 Three-Target Classification     

     A three-target classification scheme is developed and tested.  The three-target 

hypothesis follows the two-target classification method described above with one 

exception.  For two-target classification, one target is forced to a -1 on the FLD line and 

the other target is forced to +1 on the FLD line.  The natural pre-determined decision 

point becomes 0 by default.  However, for a three-target classification, the classifier must 

select different projected values for each target, since symmetry about the origin of the 

FLD line is no longer available.  Additionally, two decision points between the targets are 

now determined.  The three-target classifier problem has a feature matrix     
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and the three-target coefficient vector is  
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 whereρ ,ς , and ω  are adjustable projection values. 

     This method is an extension of the two-target classifier with some notable exceptions.  

Three-target classification uses more samples per iteration and per target than two-target 

classification.  Classifier performance improves significantly with increased samples for 

training and testing.  On average, the three-target classifier is tested with over 135 

samples compared with 45 samples for training.  Also, the coefficient vector is applied to 

a set of samples near the samples used to calculate the coefficient vector.  This procedure 

yields a theoretical performance measure and is applied until an 85% success rate for all 

three targets is achieved.  This process is necessary because classifier performance during 

testing degrades by approximately 20% from the predicted training average.      

     The coefficient vector is calculated using the first set of moment features and with 

initial bias values of -1, 0, and 1 in the projection vector.  If histograms indicate that 

classes are overlapping, the bias values are modified to reduce the overlap.  Different bias 
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values are tested until class separation approaches a 85% success rate for all three targets 

during training.     

     Lessons learned from the two-target classifier are applied to three-target classification.  

Recall that two-target classifier testing results are realized using a constant 360° sample 

window.  This wide sample window provides more robust results than smaller and more 

focused sample windows.  Thus, training no longer attempts to determine coefficient 

vectors for sample windows less than 360°.  As in the two-target classifier, the training 

and testing loops pivot the 360° sample window incrementally around the 360° target 

aspect angle view for data collection.   

     Three-target classifier results are presented below.  Results not covered in this chapter 

are in the Appendix.    
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Figure 32.  Three-Target Classification Training Histogram (BTR, ZIL, SCUD) 
The bias values (number in parenthesis) used in this iteration of training yield good 
separation between the three target classes. 
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Figure 33.  Three-Target Classification Training Plot (BTR, ZIL, SCUD) 
These curves demonstrate the percentage of the target under the curve versus the 
projected value on x-axis.  The bias values used for this iteration are the numbers in 
parenthesis after the respective target.  The task is to determine threshold values that 
allow 85% successful classification. 
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Figure 34.  Three-Target Classification Testing Histogram (BTR, ZIL, SCUD) 
The calculated coefficients determined during training yield the above result.  Separation 
between the target classes diminishes slightly from the training result.  Three times as 
many samples are used in testing to validate the training results. 
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Figure 35.  Three-Target Classification Testing Plot (BTR, ZIL, SCUD) 
The threshold values determined during classifier training result in 68% successful 
classification in testing.   
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Figure 36.  Three-Target Classification Training Histogram (M2, ZIL, SCUD) 
Classifier training shows good separability with this three-target combination.   
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Figure 37.  Three-Target Classification Training Plot (M2, ZIL, SCUD) 
The threshold values determined during classifier training can be changed to adjust 
predicted success in testing.   
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Figure 38.  Three-Target Classification Testing Histogram (M2, ZIL, SCUD) 
Classifier testing shows some overlap between M2 and ZIL-131; however, good 
threshold selection can differentiate the targets.   
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Figure 39.  Three-Target Classification Testing Plot (M2, ZIL, SCUD) 
The threshold values result in an average rate of approximately 64%, therefore, the 
classifier improves target identification significantly.   
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Figure 40.  Three-Target Classification Training Histogram (M2, T72, SCUD) 
Classifier training shows that separability is possible with this three-target combination.   
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Figure 41.  Three-Target Classification Training Plot (M2, T72, SCUD) 
The threshold values determined during classifier training can be changed to adjust the 
predicted success rate in testing.   
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Figure 42.  Three-Target Classification Testing Histogram (M2, T72, SCUD) 
Classifier testing shows some overlap between M2 and T72, however, good threshold 
selection can differentiate the targets.   
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Figure 43.  Three-Target Classification Testing Plot (M2, T72, SCUD) 
The threshold values result in an average selection rate of under 50 %; however, random 
results yield a correct selection rate of about 33 %, therefore, the classifier does improve 
target identification.   
      

     Results show that FLD is a good method for classification of three targets.  The 

adjustable biases and decision thresholds maintain the performance results found for two-

target classification.  The three-target classifier relies heavily on the targets chosen for 

classification and does not perform well with three very similar targets. 
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V. Conclusions 
 

5.1 Summary 

     The research presented here evaluates the application of a Fisher Linear Discriminator 

for target classification using statistical moments extracted from High Range Resolution 

profiles.  The research concludes that 1) HRR profile moments are suitable features for 

classification, 2) Fisher Linear Discrimination is a suitable method for target 

classification.  Thus a simple approach to target classification yields good results if 

appropriate features are used. 

5.1.1 Performance of HRR Profile Moments as Classification Features 

     The first four moments of HRR profiles offer significant and distinguishing 

information for use in classification.  Pre-processing the moment data is critical to 

successful implementation.  It is unlikely that using higher order moments will aid 

classification because performance results peak with only two moments. 

5.1.2 Performance of Fisher Linear Discrimination as a Classification Method 

     Classification with Fisher Linear Discrimination is appropriate when used with greatly 

dissimilar targets, and it performs adequately for like targets.  The overall method has 

reduced processing time compared to neural network techniques, and it provides a greatly 

simplified classification alternative.  Unlike most neural net models, the FLD model 

avoids the credit assignment problem, i.e., determining the extent to which each input 

feature contributes to the classification output.  Multinomial Pattern Matching (MPM) 

achieved a 74% correct classification rate for HRR profiles from three airborne targets 
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sampled from narrow five-degree-by-five-degree aspect and elevation angle windows 

[21].  FLD achieved comparable results for a full 360-degree aspect angle window with 

an unbound elevation angle input parameter. 

5.1.3 Linear Classification Performance 

     An appropriately applied simple classification scheme can meet or exceed the 

performance of more complex target recognition methods.  The FLD has a greater than 

60% success rate for two and three target scenarios with a single HRR profile extracted 

from a 360° sample aspect angle window.  

5.2 Recommendations for Future Work  

5.2.1 Expand Fisher Linear Discrimination to Four-Target Scenario 

     Since performance remained steady for classification of both two and three target 

scenarios, it is natural to assume that a four-target scenario may also benefit from this 

classification technique and the use of moments as features. 

5.2.2 Select a Different Feature Set for Use with FLD Classification  

     Wavelet transform features have been applied successfully in HRR profile 

classification.  They may provide a more powerful feature set for use with Fisher Linear 

Discrimination.    
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5.2.3 Non-linear Classification Using Moment Features 

     Non-linear classification may further enhance the use of a moment feature set for 

target recognition.  Of particular interest are non-parametric methods and clustering 

techniques. 

5.2.4 Train on Synthetic Data and Test on Measured Data 

     Synthetic data is often used for classification training since measured data is difficult 

and expensive to obtain.  Complicated classifiers are highly sensitive to even slight 

discrepancies between synthetic and measured data.  Since moment features provide a 

course representations of HRR profiles with little regard to details, research extending the 

applicability of moment features for this purpose may be useful.  

 

  

 

 
 
 
 
 
 
 
 



 79

Bibliography 
 
1. Alphatech Inc, Moving Target Features and Phenomenology (MTFP) for Track 
 Maintenance. Final Report, 2003. 
 
2  Bishop, C. M., Neural Networks for Pattern Recognition, Oxford University Press, 
 1995. 
 
3. DeWitt. Mark R. High Range Resolution Radar Target Identification Using the Prony 
 Model and Hidden Markov Models. MS thesis. Air Force Institute of Technology, 
 1992. 
 
4. Duda, et al., Pattern Classification, 2nd Edition. New York: John Wiley & Sons, Inc. 
             2001.   
 
5. Eisenbies, Christopher Lawrence. Classification of Ultra High Range Resolution 
 Radar Using Decision Boundary Analysis. MS thesis, Air Force Institute of 
 Technology, 1994. 
 
6.  Gutierrez-Osuna, Ricardo. Class handout, CS 790, Selected Topics in Computer 
 Science. Russ School of Engineering, Wright State University OH. Dec 2002. 
 
7.  Hawley, Robert. Presentation, MRC's Data Object API.  Mission Research 
 Corporation. Oct 2003. 
 
8.  Huaitie, Xiao, et al. "On Notions of Information Transfer in VLSI CIrcuits." 
 Proceedings of the IEEE 1997 National Aerospace and Electronics Conference. 
 1997.  
 
9.  HyperStat Online Contents. 5 Jan 2004 http://davidmlane.com/hyperstat/A53638.html 
 
10. Mitchell, Richard A. and John J. Westerkamp.  "A Statistical Feature Based Classifer 
 for Robust High Range Resolution Target Identification."  Submission to IEEE 
 Transactions on Aerospace and Electronic Systems, Nov 1997. 
 
11. Nelson, Dale E.  High Range Resolution Radar Target Classification: A Rough Set 
 Approach.  Russ College of Engineering and Technology, Ohio University, June 
 2001. 
 
12. Pham, Dzung Tri.  Applications of Unsupervised Clustering Algorithms to Aircraft 
 Identification Using High Range Resolution Radar. MS thesis, Air Force Institute 
 of Technology, 1997. 
 



 80

13.  Polikar, Robi. Class handout, ECE 504, Theory and Application of Pattern 
 Recognition. School of Engineering, Rowan University, Glasboro, NJ, Dec 2003. 
 
14.  Shmitz, James. Presentation Slides.  MTFPTM Data Collection and Management 
 Overview.  Veridian Engineering Dayton OH. 2003. 
 
15.  Songhua, He, et al.,  "Target Discrimination and Recognition Using High Resolution 
 Range Features."  Proceedings of the IEEE 1992 National Aerospace and 
 Electronics Conference. 1992. 
 
16.  Stimson, George W.  Introduction to Airborne Radar, 2nd Edition.  Mendham NJ: 
 SciTech Publishing Inc.  1998. 
 
17.  Tang, et al.,.  "Comparison Study on High Resolution Radar  Target Recognition."  
 Proceedings of the IEEE 1996 National Aerospace and Electronics 
 Conference. 1996. 
 
18.  Tang, et al., "High Resolution Radar Detection Based on Fractal Dimension."  
 Proceedings of the IEEE 1996 National Aerospace and Electronics 
 Conference. 1996. 
 
19.  Ulug, et al.  "Efficient ATR Using Compression." IEEE Transactions on 
 Aerospace and Electronic Systems. 1997. 
 
20.  Zahirniak, Daniel R.  Characterization of Radar Signals Using Neural Networks.  MS 
 thesis, AFIT/GE/ENG/90D-69, School of Engineering and Management, Air 
 Force Institute of Technology (AU), Wright-Patterson AFB OH. Dec 1990. 
 
21.  Zumwalt, Michel P.  Robust High Range Resolution Radar for Target Classification.  
 MS thesis, AFIT/GE/ENG/00M-19, School of Engineering and Management, Air 
 Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2000. 
 
22.  Zun, Zhang. et al.  "Aircraft Target Recognition Using Adaptive Time-Delay Nueral 
 Network." Proceedings of the IEE 1997 National Aerospace and Electronics 
 Conference. 1997. 
 

 

 

 

 



 81

Appendix-A 
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Figure 44.  Aspect Angle View Classification Results for BTR-80 and ZSU-23 
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Figure 45.  Sample Window Classification Results for BTR-80 and ZSU-23 
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Figure 46.  Aspect Angle View Classification Results for M-2 and BTR-80 
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Figure 47.  Sample Window Classification Results for M-2 and BTR-80 
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Figure 48.  Aspect Angle View Classification Results for M-2 and SCUD 
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Figure 49.  Sample Window Classification Results for M-2 and SCUD 
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Figure 50.  Aspect Angle View Classification Results for M-2 and ZIL-131 
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Figure 51.  Sample Window Classification Results for M-2 and ZIL-131 
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Figure 52.  Aspect Angle View Classification Results for M-2 and ZSU-23 
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Figure 53.  Sample Window Classification Results for M-2 and ZSU-23 
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Figure 54.  Aspect Angle View Classification Results for SCUD and BTR-80 
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Figure 55.  Sample Window Classification Results for SCUD and BTR-80 
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Figure 56.  Aspect Angle View Classification Results for SCUD and ZIL-131 
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Figure 57.  Sample Window Classification Results for SCUD and ZIL-131 
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Figure 58.  Aspect Angle View Classification Results for SCUD and ZSU-23 
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Figure 59.  Sample Window Classification Results for SCUD and ZSU-23 
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Figure 60.  Aspect Angle View Classification Results for T-72 and M-2 
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Figure 61.  Sample Window Classification Results for T-72 and M-2 
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Figure 62.  Aspect Angle View Classification Results for T-72 and SCUD 
 

50 100 150 200 250 300 350
30

40

50

60

70

80

90

100
T72/SCUD

S
uc

ce
ss

 R
at

e 
(%

)

Window Size

Training (Avg = 83%)
Testing (Avg = 80%)

 

Figure 63.  Sample Window Classification Results for T-72 and SCUD 
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Figure 64.  Aspect Angle View Classification Results for T-72 and ZIL-131 
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Figure 65.  Sample Window Classification Results for T-72 and ZIL-131 
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Figure 66.  Aspect Angle View Classification Results for T-72 and ZSU-23 
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Figure 67.  Sample Window Classification Results for T-72 and ZSU-23 
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Figure 68.  Aspect Angle View Classification Results for ZIL-131 and ZSU-23 
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Figure 69.  Sample Window Classification Results for ZIL-131 and ZSU-23 
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Figure 70.  Aspect Angle View Classification Results for T-72 and ZIL-131 
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Figure 71.  Sample Window Classification Results for T-72 and ZIL-131 
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Figure 72.  Three-Target Classification Training Histogram (T72, ZIL, SCUD) 
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Figure 73.  Three-Target Classification Training Plot (T72, ZIL, SCUD) 
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Figure 74.  Three-Target Classification Testing Histogram (T72, ZIL, SCUD) 
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Figure 75.  Three-Target Classification Testing Plot (T72, ZIL, SCUD) 
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